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Abstract

Logic-based bidding languages are used for preference rep-
resentation in combinatorial auctions. Given a set of propo-
sitional formulas with associated weights, finding a valuation
that maximizes the sum of the weights which are associated
to satisfied formulas is a canonical problem in this context.
The general case is intractable, and natural restrictions of the
languages tend to either leave the complexity unchanged or
reduce it to triviality. After proposing a different decision
problem than the one considered in existing research, we use
a new approach to find P -complete languages.

Goal Base Decision Problem
The Function Problem
In combinatorial auctions using a class C of weighted propo-
sitional formulas (ϕ, w) as possible bids, the winner deter-
mination problem is as follows: Given a set S ∈ C, find
an assignment vmax for the propositional letters such that
vmax(S) is maximal, where

v(S) :=
∑

(ϕ,w)∈S with v(ϕ)=>

w.

The Decision Problem used so far
The decision problem formulation used so far was: Given a
set S ∈ C and a number k, is vmax(S) ≥ k?

We argue that this decision problem does not properly
represent the above function problem. For example, con-
sider the class

C = {S|S is a satisfiable set of formulas with weights ≥ 0}

Then obviously the decision problem is trivial (take the sum
of all weights and check whether it is ≥ k), while the func-
tion problem is possibly not trivial (prove this?), and it is not
possible to construct a solution to the function problem by
solving the decision problem.

Proposing a Different Decision Problem
A function problem and an associated decision problem
should be related in the sense that solving one enables one
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to solve the other (see and maybe some better references...).
This does not hold for the decision problem used so far.

We therefore propose the following decision problem:
Given a set S and a propositional letter p, is vmax(p) = >
under the least (according to some linear order over the
maximizing assignments) maximizing assignment vmax?
(counter-example for a definition requiring just some maxi-
mizing assignment: {(1, p ∧ ¬q), (1,¬p ∧ q)})

A solution procedure for this decision problem can be
called n times (where n is the number of available proposi-
tional variables) to construct a solution to the original func-
tion problem.

Propositional Logic Programming
Definition 1 By PS we denote the set of all propositional
symbols (atoms) of the language under consideration.

Definition 2 For a set of atoms A and a propositional for-
mula ϕ, we write A |= ϕ iff the valuation assigning > to all
elements of A and ⊥ to all other atoms satisfies ϕ. For a
set S of propositional formulas, we write A |= S iff A |= ϕ
for all ϕ ∈ S. We use the set and the valuation notions
interchangeably.

Definition 3 A (strict/general) Horn clause is a disjunction
containing (exactly/at most) one positive literal.

Definition 4 For a set S of strict Horn clauses, the least
model LM(S) of S is the (unique) smallest set A such that
A |= S.

Fact 5 Existence of a unique least model is a result from
logic programming.

Definition 6 (Propositional Logic Programming)
Given: A set S of strict Horn clauses and p ∈ PS

Question: Is p ∈ LM(S)?
Fact 7 (from (Dantsin et al. 2001, p. 385)) Propositional
Logic Programming is P -complete.

Propositional Logic Programming Goal Bases
Definition 8 The class GPLP of Propositional Logic Pro-
gramming Goal Bases consists of all goal bases

G =
n⋃

i=1

{(ϕi, wi)} ∪
⋃

p∈PS

{(p,− m
|PS|+1b)} ,



where wi > 0 for all i, m = minn
i=1{wi}, and LP (G) :=

{ϕ1, . . . ϕn} is the underlying logic program consisting of
all positively weighted formulas.

Fact 9 The negative weights associated to the single atoms
sum up to an absolute value less than any wi. I.e., for any
G ∈ GPLP and all i, wi >

∑
p∈PS

m
|PS|+1 .

Corollary 10 The (unique) maximizing valuation of any
G ∈ GPLP is the least model of the underlying logic pro-
gram, i.e. LM(LP (G)).

Proof. v := LM(LP (G)) obviously satisfies all formulas of
G that have positive weights. Due to v being a least model
and Fact 9, no subset of v gets a higher value; due to the
negative weights associated to single atoms, no superset of
v gets a higher value; and due to Fact 5, v is unique. �

Fact 11 The decision problem from ?? for PLP Goal Bases
is in P .

Proof. Given G ∈ GPLP and p ∈ PS, LP (G) can be com-
puted in linear time, and then p ∈ LM(LP (G)) is decidable
in polynomial time due to Fact 7. According to Corollary 10,
this yields the answer to the original problem. �

Fact 12 Propositional Logic Programming can be reduced
in logarithmic space to the decision problem from ?? for
PLP Goal Bases.

Proof. Given a logic program S = {ϕ1, . . . , ϕn} and p ∈
PS, define

G :=
n⋃

i=1

{(ϕi, 1)} ∪
⋃

p∈PS

{(p,− 1
|PS|+1 )} .

Obviously, G ∈ GPLP , and due to Corollary 10, the solution
to the PLP Goal Base decision problem instance (G, p) is
also the solution to the Propositional Logic Programming
decision problem instance (S, p). �

Corollary 13 The decision problem from ?? for PLP Goal
Bases is P -complete.

Note 14 Maybe there are be more natural ways to force the
maximizing valuation to correspond to the least model.

Couldn’t this even be a desideratum for the allocation
mechanism in order to make sure not to give out things un-
necessarily to someone who doesn’t profit from them, while
maybe someone else would have?

HORNSAT Approach
Maybe the following is slightly more natural...

Fact 15 Deciding satisfiability of a set of general Horn
clauses is P -complete (Greenlaw, Hoover, & Ruzzo 1992).

Definition 16 The class GHS of HORNSAT Goal Bases
consists of all sets G of weighted general Horn clauses with
positive weights, subject to the following (unintuitive) con-
dition: Let wi denote the weights of the strict Horn clauses
in G and w′

j denote the remaining weights. Then we require
that

∑
j w′

j < mini{wi}. That is, the sum of weights of
non-strict clauses (i.e. those containing no positive literal)
is less than the least weight associated to some strict clause.

Fact 17 The decision problem from ?? for HS Goal Bases
is in P .

Proof. Given G ∈ GHS , use e.g. unit propagation to find
satisfying assignment if it exists. If it does exist, this is the
maximizing assignment since all weights are positive. If it
does not exist, let G′ ⊂ G be the subset of all strict Horn
clauses. Due to the unintuitive condition from Definition 16,
LM(G′) is a maximizing assignment for G, since it satisfies
all strict Horn clauses, and satisfies the most non-strict Horn
clauses among all assignments which satisfy all strict Horn
clauses.

Any other maximizing assignments are supersets of
LM(G′), so the ( relation is a linear order over maximiz-
ing assignments with LM(G′) as least element, and thus we
can use this assignment to solve the decision problem from
?? for HS Goal Bases. �

Fact 18 HORNSAT can be reduced in logarithmic space to
the decision problem from ?? for HS Goal Bases.

Proof. Given a set S = {ϕ1, . . . , ϕn, ϕ′
1, . . . , ϕ

′
m} of strict

(ϕi) and non-strict (ϕ′
i) Horn clauses, build the HS Goal

Base

G :=
n⋃

i=1

{(ϕi, 1)} ∪
m⋃

i=1

{(ϕ′
i,

1
m+1 )} ,

obtain the maximizing assignment by solving the decision
problem for G and each p ∈ PS, and check whether it sat-
isfies all formulas in G. Since the assignment is maximizing
and all weights are positive, it will do so iff G is satisfiable.
�

Corollary 19 The decision problem from ?? for HS Goal
Bases is P -complete.

Note 20 The unintuitive condition in Definition 16 is only
used for Fact 17. Maybe it is possible to come up with a
more intuitive condition ensuring that we stay in P .
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