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¶ Synopsis

We use logic-based preference representation
languages based on weighted propositional for-
mulas for specifying bids in a combinatorial auc-
tion. We then develop several heuristics for a
branch-and-bound search algorithm for deter-
mining the winning bids, and report on their
empirical performance. The logic-based ap-
proach is attractive due to its high degree of �ex-
ibility in designing a range of di�erent bidding
languages within a single conceptual framework.

· Combinatorial Auctions

Combinatorial auctions are auctions in which
the auctioneer is o�ering not just one, but a
whole set of goods, for sale simultaneously. Po-
tential buyers can make bids for di�erent subsets
of this set of goods.

Specifying bids for all 2n subsets of n
goods is infeasible. Bidders need a bid-

ding language, as in ¸.

Logic-based bidding languages are attractive be-
cause their expressivity and succinctness can be
tailored to be appropriate for the particular auc-
tion setting in which they are being used.

¹ Winner Determination

The Winner Determination Problem (WDP) is
the problem of deciding which goods to allocate
to which bidder in such a way that maximizes
the sum of the weights associated with the goals
satis�ed by the chosen allocation.

The social welfare of an allocation A is

sw(A) =
∑
i∈A

∑
(ϕ,w)∈Gi

MA
i |=ϕ

w

TheWDP is the optimization problem of �nding
a complete allocation A maximizing sw(A). By
restricting attention to complete allocations we
are de�ning a WDP without free disposal.

¸ Weighted Formulas

• PS is a �xed, �nite set of propositional vari-
ables.

• LPS is the language of propositional logic
over PS.

• Each p ∈ PS represents one of the goods on
auction.

• Bidders use formulas of LPS to express goals.
E.g., p1 ∧ p6 expresses that a bidder wants
goods p1 and p6 (together�each item on its
own may represent no value at all), while
¬p2 says that she would rather not get p2.

• The set of goods M obtained by a bidder
is a propositional model, such that M |= p
i� p ∈ M . Example: M |= p1 ∧ p6 and
M 6|= ¬p2 for M = {p1, p2, p4, p6}.

• A weighted goal is a pair (ϕ, w), where ϕ is
a formula and w ∈ R.

• A goal base G = {(ϕi, wi)}i is a set of
weighted goals where every ϕi is satis�able.

• A goal base G generates a valuation (unique)
function over sets of goods (models) M :

v(M) =
∑

{wi | (ϕi, wi) ∈ G and M |= ϕi}

That is, M is the sum of the weights of

the goals that are satis�ed by M .

º Languages

Let H ⊆ LPS be a syntactical restriction on
formulas and H ′ ⊆ R a set of allowed weights.
Then L(H,H ′) is de�ned as the bidding lan-
guage given by the class of goal bases satisfying
the restrictions H and H ′.

Examples: L(pcubes, pos) is the language
of positive cubes (conjunctions) with positive
weights. L(clauses, all) is the language of
clauses (disjunctions) with arbitrary weights.
Many more languages are possible.

» Branch & Bound

Branch & Bound is a search method which al-
ways �nds optimal allocations: Start with an
single-node initial tree with a single node A∗ = ∅
where no goods have been allocated yet. g is the
attained value, h is an (over)estimate of the re-
maining value.

1. Select a node (partial allocation) A from
the frontier that still has a chance of beat-
ing the current top allocation A∗:

g(A∗) < g(A) + h(A).

Remove any A not meeting this condition.

2. Select a good not yet allocated in A: p ∈
und(A).

3. Build as children of A all allocations A′

which extend A by allocating p. Add all
children to the frontier (and remove A
from it).

Stop when there are no more viable partial al-
locations in the frontier to choose from (during
step 1). Return (one of) the best (by now com-
plete) allocations in the �nal frontier.

B&B involves three design choices: the branch-

ing policy, the expansion policy, and the upper

bound heuristic.

¼ Branching Policies

• Lexical : The next item b(A) = p, where p
is the lexically least good not allocated by
partial allocation A. Used by our PCubeLex
solver.

• Best-estimate �rst : The next item b(A) = p,
where p is the lexically least good such that
hp(A) = maxa∈PS ha(A), where hp(A) is as
in ½. Used by our PCubeBF solver.

½ Heuristic for L(pcubes, pos)

h+
∧ (A) =

∑
p∈PS

hp(A) where

hp(A) = max
i∈A

hp
i (A)

hp
i (A) =

∑
(ϕ,w)∈Gi

hp
i (A,ϕ)

hp
i (A,ϕ) =


w

|und(A,ϕ)| if (ϕ, w) ∈ Gi,
p ∈ und(A,ϕ),MA

i ? ϕ

0 otherwise

where A is the set of agents, A is a partial allo-
cation, und(A,ϕ) is the set of unallocated items
from A occurring in ϕ, and MA

i is the partial
model de�ned by A from the point of view of
agent i. MA

i ? ϕ i� A leaves ϕ undecided.

Intuition: Divide the weight of a cube over

its unallocated atoms.

h+
∧ is correct, as it is always an upper bound,

but sacri�ces tightness for speed.

¾ Selected Experimental Results for L(pcubes, pos)
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This plot shows the number of nodes built by
PCubeLex with varying numbers of items and
agents. The worst case is building every par-
tial allocation, a complete n-ary tree of depth m,
for n agents and m goods. At the extreme cor-
ner of the plot, (20, 20), the full tree would have
5.5×1024 nodes. PCubeLex is quite parsimonious
in building nodes.
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This plot shows CPU time consumed by our
Branch & Bound solver when using PCubeBF ver-
sus the number of items on auction, with the
number agents �xed at 20. The average instance
with 20 agents and 75 items contains around 1500
atomic bids. PCubeBF is capable of solving prob-
lems with nearly one hundred items and thou-
sands of bids in under one minute.
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