
WinnerDetermination inCombinatorialAuctions

withLogic-basedBiddingLanguages
Joel Uckelman and Ulle Endriss

Institute for Logic, Language and Computation, University of Amsterdam

¶ Synopsis

We use logic-based preference representation
languages based on weighted propositional for-
mulas for specifying bids in a combinatorial auc-
tion. We then develop several heuristics for a
branch-and-bound search algorithm for deter-
mining the winning bids, and report on their
empirical performance. The logic-based ap-
proach is attractive due to its high degree of �ex-
ibility in designing a range of di�erent bidding
languages within a single conceptual framework.

· Combinatorial Auctions

Combinatorial auctions are auctions in which
the auctioneer is o�ering not just one, but a
whole set of goods, for sale simultaneously. Po-
tential buyers can make bids for di�erent subsets
of this set of goods.

Specifying bids for all 2n subsets of n
goods is infeasible. Bidders need a bid-

ding language, as in ¸.

Logic-based bidding languages are attractive be-
cause their expressivity and succinctness can be
tailored to be appropriate for the particular auc-
tion setting in which they are being used.

¹ Winner Determination

The Winner Determination Problem (WDP) is
the problem of deciding which goods to allocate
to which bidder in such a way that maximizes
the sum of the weights associated with the goals
satis�ed by the chosen allocation.

The social welfare of an allocation A is

sw(A) =
∑
i∈A

∑
(ϕ,w)∈Gi

MA
i |=ϕ

w

TheWDP is the optimization problem of �nding
a complete allocation A maximizing sw(A). By
restricting attention to complete allocations we
are de�ning a WDP without free disposal.

¸ Weighted Formulas

• PS is a �xed, �nite set of propositional vari-
ables.

• LPS is the language of propositional logic
over PS.

• Each p ∈ PS represents one of the goods on
auction.

• Bidders use formulas of LPS to express goals.
E.g., p1 ∧ p6 expresses that a bidder wants
goods p1 and p6 (together�each item on its
own may represent no value at all), while
¬p2 says that she would rather not get p2.

• The set of goods M obtained by a bidder
is a propositional model, such that M |= p
i� p ∈ M . Example: M |= p1 ∧ p6 and
M 6|= ¬p2 for M = {p1, p2, p4, p6}.

• A weighted goal is a pair (ϕ, w), where ϕ is
a formula and w ∈ R.

• A goal base G = {(ϕi, wi)}i is a set of
weighted goals where every ϕi is satis�able.

• A goal base G generates a valuation (unique)
function over sets of goods (models) M :

v(M) =
∑

{wi | (ϕi, wi) ∈ G and M |= ϕi}

That is, M is the sum of the weights of

the goals that are satis�ed by M .

º Languages

Let H ⊆ LPS be a syntactical restriction on
formulas and H ′ ⊆ R a set of allowed weights.
Then L(H,H ′) is de�ned as the bidding lan-
guage given by the class of goal bases satisfying
the restrictions H and H ′.

Examples: L(pcubes, pos) is the language
of positive cubes (conjunctions) with positive
weights. L(clauses, all) is the language of
clauses (disjunctions) with arbitrary weights.
Many more languages are possible.

» Branch & Bound

Branch & Bound is a search method which al-
ways �nds optimal allocations: Start with an
single-node initial tree with a single node A∗ = ∅
where no goods have been allocated yet. g is the
attained value, h is an (over)estimate of the re-
maining value.

1. Select a node (partial allocation) A from
the frontier that still has a chance of beat-
ing the current top allocation A∗:

g(A∗) < g(A) + h(A).

Remove any A not meeting this condition.

2. Select a good not yet allocated in A: p ∈
und(A).

3. Build as children of A all allocations A′

which extend A by allocating p. Add all
children to the frontier (and remove A
from it).

Stop when there are no more viable partial al-
locations in the frontier to choose from (during
step 1). Return (one of) the best (by now com-
plete) allocations in the �nal frontier.

B&B involves three design choices: the branch-

ing policy, the expansion policy, and the upper

bound heuristic.

¼ Branching Policies

• Lexical : The next item b(A) = p, where p
is the lexically least good not allocated by
partial allocation A. Used by our PCubeLex
solver.

• Best-estimate �rst : The next item b(A) = p,
where p is the lexically least good such that
hp(A) = maxa∈PS ha(A), where hp(A) is as
in ½. Used by our PCubeBF solver.

½ Heuristic for L(pcubes, pos)

h+
∧ (A) =

∑
p∈PS

hp(A) where

hp(A) = max
i∈A

hp
i (A)

hp
i (A) =

∑
(ϕ,w)∈Gi

hp
i (A,ϕ)

hp
i (A,ϕ) =

w

|und(A,ϕ)| if (ϕ, w) ∈ Gi,
p ∈ und(A,ϕ),MA

i ? ϕ

0 otherwise

where A is the set of agents, A is a partial allo-
cation, und(A,ϕ) is the set of unallocated items
from A occurring in ϕ, and MA

i is the partial
model de�ned by A from the point of view of
agent i. MA

i ? ϕ i� A leaves ϕ undecided.

Intuition: Divide the weight of a cube over

its unallocated atoms.

h+
∧ is correct, as it is always an upper bound,

but sacri�ces tightness for speed.

¾ Selected Experimental Results for L(pcubes, pos)

 2 4 6 8 10 12 14 16 18 20 2
 4

 6
 8

 10
 12

 14
 16

 18
 20

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

Nodes built

Items

Agents

Nodes built

This plot shows the number of nodes built by
PCubeLex with varying numbers of items and
agents. The worst case is building every par-
tial allocation, a complete n-ary tree of depth m,
for n agents and m goods. At the extreme cor-
ner of the plot, (20, 20), the full tree would have
5.5×1024 nodes. PCubeLex is quite parsimonious
in building nodes.

 0.001

 0.01

 0.1

 1

 10

 100

 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

C
P

U
 ti

m
e

(s
ec

on
ds

)

Items

This plot shows CPU time consumed by our
Branch & Bound solver when using PCubeBF ver-
sus the number of items on auction, with the
number agents �xed at 20. The average instance
with 20 agents and 75 items contains around 1500
atomic bids. PCubeBF is capable of solving prob-
lems with nearly one hundred items and thou-
sands of bids in under one minute.

1

2

